Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells.
نویسندگان
چکیده
Mechanical stimuli are transduced into intracellular signals in lung alveolar epithelial cells (AEC). We studied whether mitogen-activated protein kinase (MAPK) pathways are activated during cyclic stretch of AEC. Cyclic stretch induced a rapid (within 5 min) increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in AEC. The inhibition of Na(+), L-type Ca(2+) and stretch-activated ion channels with amiloride, nifedipine, and gadolinium did not prevent the stretch-induced ERK1/2 activation. The inhibition of Grb2-SOS interaction with an SH3 binding sequence peptide, Ras with a farnesyl transferase inhibitor, and Raf-1 with forskolin did not affect the stretch-induced ERK1/2 phosphorylation. Moreover, cyclic stretch did not increase Ras activity, suggesting that stretch-induced ERK1/2 activation is independent of the classical receptor tyrosine kinase-MAPK pathway. Pertussis toxin and two specific epidermal growth factor receptor (EGFR) inhibitors (AG-1478 and PD-153035) prevented the stretch-induced ERK1/2 activation. Accordingly, in primary AEC, cyclic stretch activates ERK1/2 via G proteins and EGFR, in Na(+) and Ca(2+) influxes and Grb2-SOS-, Ras-, and Raf-1-independent pathways.
منابع مشابه
Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway.
Mechanical forces are important for fetal alveolar epithelial cell differentiation. However, the signal transduction pathways regulating this process remain largely unknown. Based on the importance of the extracellular-regulated protein kinase (ERK) pathway in cell differentiation, we hypothesized that this cascade mediates stretch-induced fetal type II cell differentiation. We demonstrate that...
متن کاملFGF-10 prevents mechanical stretch-induced alveolar epithelial cell DNA damage via MAPK activation.
Cyclic stretch of alveolar epithelial cells (AEC) can alter normal lung barrier function. Fibroblast growth factor-10 (FGF-10), an alveolar type II cell mitogen that is critical for lung development, may have a role in promoting AEC repair. We studied whether cyclic stretch induces AEC DNA damage and whether FGF-10 would be protective. Cyclic stretch (30 min of 30% strain amplitude and 30 cycle...
متن کاملAHEART February 47/2
Iwasaki, Hiroaki, Satoru Eguchi, Hikaru Ueno, Fumiaki Marumo, and Yukio Hirata. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am. J. Physiol. Heart Circ. Physiol. 278: H521–H529, 2000.—We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 ...
متن کاملMechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor.
We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and protein synthesis in cultured rat vascular smooth muscle cells (VSMC). Cyclic stretch (1 Hz) induced a rapid (within 5 min) phosphorylation of ERK1/2, an effect that was time and strength dependent and inhibited by an EGFR...
متن کاملGonadotropin-stimulated epidermal growth factor receptor expression in human ovarian surface epithelial cells: involvement of cyclic AMP-dependent exchange protein activated by cAMP pathway.
In addition to their critical roles in folliculogenesis and ovarian granulosa cell steroidogenesis, gonadotropins have been implicated as potential risk factors in ovarian epithelial carcinomas, most of which are derived from ovarian surface epithelium (OSE). However, the molecular mechanism underlying the effects of FSH and LH in OSE and its neoplastic counterpart is not well understood. We pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 5 شماره
صفحات -
تاریخ انتشار 2002